Anoka-Hennepin Secondary Curriculum Unit Plan

Department:	Mathematics	Course:	Statistics and Probability	Unit 2 Title:	Probability	Grade Level(s):	10-11
Assessed Trimester:	Trimester A	Pacing:	8-10 Days	Date Created:	1/29/2014	Last Revision Date:	1/29/2014

Course Understandings: Student will understand that:

A. Selecting and applying counting procedures to determine the number of outcomes and calculating probabilities can be applied to real-world situations to make informed decisions.

DESIRED RESULTS (Stage 1) - WHAT WE WANT STUDENT TO KNOW AND BE ABLE TO DO?

Established Goals

Minnesota State/Local/Technology Standard(s) addressed (2007):

- Standard (9.4.3.#): Calculate probabilities and apply probability concepts to solve real-world and mathematical problems. Benchmark:
 - **9.4.3.1** Select and apply counting procedures, such as the multiplication and addition principles and tree diagrams, to determine the size of a sample space (the number of possible outcomes) and to calculate probabilities.
 - **9.4.3.3** Understand that the Law of Large Numbers expresses a relationship between the probabilities in a probability model and the experimental probabilities found by performing simulations or experiments involving the model.
 - 9.4.3.5 Apply probability concepts such as intersections, unions and complements of events, and conditional probability and independence, to calculate probabilities and solve problems.
 - **9.4.3.6** Describe the concepts of intersections, unions and complements using Venn diagrams. Understand the relationships between these concepts and the words AND, OR, NOT, as used in computerized searches and spreadsheets.
 - **9.4.3.7** Understand and use simple probability formulas involving intersections, unions and complements of events.
 - **9.4.3.8** Apply probability concepts to real-world situations to make informed decisions.
 - **9.4.3.9** Use the relationship between conditional probabilities and relative frequencies in contingency tables.

Transfer

Students will be able to independently use their learning to: (product, high order reasoning)

•

Unit Understanding(s):

Students will understand that:

- Venn diagrams, tree diagrams, 2-way tables will help organize information to allow us to find the probability of an event.
- in order to calculate probabilities accurately you need to consider whether events are independent and if the outcomes are mutually exclusive.
- formulas are useful in calculating probabilities.

Meaning Essential Question(s):

Students will keep considering:

- How is probability used in a gaming setting?
- How are probabilities impactful in real life situations (i.e. Insurance, Medical Information)?

Acquisition

Knowledge - Students will:

- Multiplication and addition for probability
- Define combinations, permutations and tree diagrams
- Understand what an experimental probability is
- Understand what a theoretical probability is
- Understand the Law of Large Numbers
- Know what a legitimate probability model is
- Define and understand:
 - Intersections
 - Unions
 - Complements
 - Conditional probability
 - Independence
 - Addition rule of probability
 - o Multiplication rule of probability
 - Venn diagrams
 - Understand probability notation
 - o Identify complements, unions and intersections in Venn Diagrams
 - o Symbols for AND, OR, NOT
 - List/know the formulas involving intersections, unions and complements of events
 - o Conditional probability formula
 - How to find marginal distributions
 - Understand relative frequency

Reasoning - Students will:

- Distinguish the difference between the multiplication and addition principles
- Distinguish which principles and counting methods are appropriate to use for various situations
- Analyze how the Law of Large Numbers applies to the relationship between experimental and theoretical probabilities
- Determine which probability concept applies to which problem
- Distinguish between intersection, complements and unions of events in real world applications using the words AND, OR and NOT
- Distinguish between situations where the formulas for intersections, unions and complements should be used
- Justify a decision using probability concepts
- Distinguish which values in a contingency table to use in formula

Skills - Students will:

- Use appropriate methods to calculate probabilities
- Calculate probability
- Use the formulas for intersections, unions and complements of events to solve problems
- Use probability concepts in real world situations
- Use contingency tables to calculate conditional probabilities

Common Misunderstandings

- Students cannot decide which method to use.
- Students choose incorrect operations.
- Students incorrectly calculate conditional probabilities.
- Students do not recognize implausible answers.
- Students do not recognize scientific notation on a calculator.
- Students do not understand independence.
- Students do not realize when the complement rule is most efficient.
- Students cannot draw and read a Venn diagram properly when the circles are overlapping.

Essential new vocabulary

- Complements
- Conditional probability
- Dependent events
- Experimental probability
- Independent events
- Intersection
- Law of Large Numbers
- Mutually exclusive/disjoint
- Odds
- Venn diagrams
- Theoretical probability
- Two-way tables
- Union